291 research outputs found

    Degeneracy and strategies of long baseline and reactor experiments

    Full text link
    Assuming that the JPARC experiment measures the oscillation probabilities P(νμνe)P(\nu_\mu\to\nu_e) and P(νˉμνˉe)P(\bar{\nu}_\mu\to\bar{\nu}_e) at Δm312L/4E=π/2|\Delta m^2_{31}|L/4E=\pi/2, I discuss what kind of extra experiment (long baseline or reactor) can contribute to determination of θ13\theta_{13} and the CP phase δ\delta.Comment: 3 pages, 3 sets of figures, uses espcrc2.sty. Talk given at 6th International Workshop on Neutrino Factories and Superbeams (NuFact 04), Osaka, Japan, 26 Jul - 1 Aug 200

    More on Non-standard Interaction at MINOS

    Full text link
    We discuss about effects of the non-standard interaction of neutrinos with matter on the nu_e appearance search in the MINOS experiment. We consider the effects of the complex phase of the interaction and of the uncertainty on theta_23 also. We show that the oscillation probability can be so large that can not be explained by the ordinary oscillation. We show also how much constraints on the non-standard effects can be improved if the experiment does not observe nu_e appearance signal.Comment: Talk given at 9th International Workshop on Neutrino Factories, Superbeams and Betabeams (NuFact07), Okayama, Japan, 6-11 Aug 200

    Computer-aided diagnosis of lung nodule using gradient tree boosting and Bayesian optimization

    Full text link
    We aimed to evaluate computer-aided diagnosis (CADx) system for lung nodule classification focusing on (i) usefulness of gradient tree boosting (XGBoost) and (ii) effectiveness of parameter optimization using Bayesian optimization (Tree Parzen Estimator, TPE) and random search. 99 lung nodules (62 lung cancers and 37 benign lung nodules) were included from public databases of CT images. A variant of local binary pattern was used for calculating feature vectors. Support vector machine (SVM) or XGBoost was trained using the feature vectors and their labels. TPE or random search was used for parameter optimization of SVM and XGBoost. Leave-one-out cross-validation was used for optimizing and evaluating the performance of our CADx system. Performance was evaluated using area under the curve (AUC) of receiver operating characteristic analysis. AUC was calculated 10 times, and its average was obtained. The best averaged AUC of SVM and XGBoost were 0.850 and 0.896, respectively; both were obtained using TPE. XGBoost was generally superior to SVM. Optimal parameters for achieving high AUC were obtained with fewer numbers of trials when using TPE, compared with random search. In conclusion, XGBoost was better than SVM for classifying lung nodules. TPE was more efficient than random search for parameter optimization.Comment: 29 pages, 4 figure

    Visualizing the Cascade Effect of Redesigning Features in an EMR System

    Get PDF
    Electronic Medical Record (EMR) systems are complex systems with interdependent features. Redesigning one feature of the system can create a cascade effect affecting the other features. By calculating the cascade effect, the designers can understand how each individual feature could be affected. This understanding allows them to maximize the positive effects and avoid negative consequences of their redesign activities. To understand the cascade effect, the designers can look at their computations’ results; a task that becomes more difficult when the number of features grows. To reduce their task load, we propose a tool for visualizing the cascade effect of redesigning features in an EMR system. Our preliminary evaluation with six graduate students shows that visualizing the cascade effect reduces the task load and slightly improves their performance when analyzing the cascade effect. Ways for improving the tool include (i) showing the computation results within the visualization, and (ii) allowing the designers to compare the cascade effect generated by redesigning different features

    Token Economy–Based Hospital Bed Allocation to Mitigate Information Asymmetry: Proof-of-Concept Study Through Simulation Implementation

    Get PDF
    [Background:] Hospital bed management is an important resource allocation task in hospital management, but currently, it is a challenging task. However, acquiring an optimal solution is also difficult because intraorganizational information asymmetry exists. Signaling, as defined in the fields of economics, can be used to mitigate this problem. [Objective:] We aimed to develop an assignment process that is based on a token economy as signaling intermediary. [Methods:] We implemented a game-like simulation, representing token economy–based bed assignments, in which 3 players act as ward managers of 3 inpatient wards (1 each). As a preliminary evaluation, we recruited 9 nurse managers to play and then participate in a survey about qualitative perceptions for current and proposed methods (7-point Likert scale). We also asked them about preferred rewards for collected tokens. In addition, we quantitatively recorded participant pricing behavior. [Results:] Participants scored the token economy–method positively in staff satisfaction (3.89 points vs 2.67 points) and patient safety (4.38 points vs 3.50 points) compared to the current method, but they scored the proposed method negatively for managerial rivalry, staff employee development, and benefit for patients. The majority of participants (7 out of 9) listed human resources as the preferred reward for tokens. There were slight associations between workload information and pricing. [Conclusions:] Survey results indicate that the proposed method can improve staff satisfaction and patient safety by increasing the decision-making autonomy of staff but may also increase managerial rivalry, as expected from existing criticism for decentralized decision-making. Participant behavior indicated that token-based pricing can act as a signaling intermediary. Given responses related to rewards, a token system that is designed to incorporate human resource allocation is a promising method. Based on aforementioned discussion, we concluded that a token economy–based bed allocation system has the potential to be an optimal method by mitigating information asymmetry

    Identification of Respiratory Sounds Collected from Microphones Embedded in Mobile Phones

    Get PDF
    Sudden deterioration of condition in patients with various diseases, such as cardiopulmonary arrest, may result in poor outcome even after resuscitation. Early detection of deterioration is important in medical and long-term care settings, regardless of the acute or chronic phase of disease. Early detection and appropriate interventions are essential before resuscitating measures are required. Among the vital signs that indicate the general condition of a patient, respiratory rate has a greater ability to predict serious events such as thromboembolism and sepsis than heart rate and blood pressure, even in early stages. Despite its importance, however, respiratory rate is frequently overlooked and not measured, making it a neglected vital sign. To facilitate the measurement of respiratory rate, a non-invasive method of detecting respiratory sounds was developed based on deep learning technology, using a built-in microphone in a smartphone. Smartphones attached to the bed headboards of 20 participants undergoing polysomnography (PSG) at Kyoto University Hospital recorded respiratory sounds. Sound data were synchronized with overnight respiratory information. After excluding periods of abnormal breathing on the PSG report, sound data were processed for each 1-minute period. Expiration sound was determined using the pressure flow sensor signal on PSG. Finally, a model to identify the expiration section from the sound information was created using a deep learning algorithm from the convolutional Long Short Term Memory network. The accuracy of the learning model in identifying the expiratory section was 0.791, indicating that respiratory rate can be determined using the microphone in a smartphone. By collecting data from more patients and improving the accuracy of this method, respiratory rates could be more easily monitored in all situations, both inside and outside the hospital

    Recognition of Instrument Passing and Group Attention for Understanding Intraoperative State of Surgical Team

    Get PDF
    Appropriate evaluation of the intraoperative state of a surgical team is essential for the improvement of teamwork and hence a safe surgical environment. Traditional methods to evaluate intraoperative team states such as interview and self-check questionnaire on each surgical team member often require human efforts, which are time-consuming and can be biased by individual recall. One effective solution is to analyze the surgical video and track the important team activities, such as whether the members are complying with the surgical procedure or are being distracted by unexpected events. However, due to the complexity of the situations in an operating room, identifying the team activities without any human effort remains challenging. In this work, we propose a novel approach that automatically recognizes and quantifies intraoperative activities from surgery videos. As a first step, we focus on recognizing two activities that especially involve multiple individuals: (a) passing of clean-packaged surgery instruments which is a representative interaction between the surgical technologists such as the circulating nurse and scrub nurse, and (b) group attention that may be attracted by unexpected events. We record surgical videos as input, and apply pose estimation and particle filters to extract individual's face orientation, body orientation, and arm raise. These results coupled with individual IDs are then sent to an estimation model that provides the probability of each target activity. Simultaneously, a person model is generated and bound to each individual, which describes all the involved activities along the timeline. We tested our method using videos of simulated activities. The results showed that the system was able to recognize instrument passing and group attention with F1 = 0.95 and F1 = 0.66, respectively. We also implemented a system with an interface that automatically annotated intraoperative activities along the video timeline, and invited feedback from surgical technologists. The results suggest that the quantified and visualized activities can help improve understanding of the intraoperative state of the surgical team
    corecore